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Abstract. In Rydberg atoms subject to static and harmonic collinear electric fields, intrashell transition can
be induced by the first order perturbation from a small perpendicular electric or magnetic field, or by effects
of the second order in the major fields. Both mechanisms lead to resonances that are suppressed under
certain conditions, and high-frequency interference oscillations in case of non-adiabatic field switching.
Recent measurements of microwave ionization signals show very rich and fascinating structures similar to
the ones predicted for intrashell mixing. We show that the observed ionization structures may be explained
by diabatic electric-field ionization and the consistent use of perturbation theory for intrashell mixing. In
particular, the dominant oscillation frequency is successfully interpreted in terms of interference between
first and second order transition amplitudes. New predictions are provided. The present approach gives
a comprehensive picture of intrashell transitions, which may be tested in future experiments designed to
observe such transitions directly.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g. Rydberg states) –
42.50.Hz Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic
Stark shift

1 Introduction

Recent experiments by Koch et al. [1] and Galvez et al. [2]
focused on the microwave “ionization” of Rydberg states
of hydrogen with initial principal quantum numbers n
within the range 39–74. The term “ionization” is synony-
mous with true ionization or excitation to higher shells
much closer to the ionization limit than the initial one.
The experiment did not separate the two channels. The
“ionization” took place inside a microwave cavity as a fast,
monoenergetic beam of the hydrogenic Rydberg atoms
passed through it. A definite n shell was selectively pop-
ulated by tunable lasers, but the population was spread
over the n2 degenerate substates of the shell. Selective
field-ionization indicated that all substates were populated
approximately statistically. The “ionization” was driven
by an oscillating electric field of amplitude Fω and fre-
quency ω in the presence of a collinear, static electric
field, Fs. The Rydberg atoms were exposed to the fields for
a finite time T as they passed through the cavity. The total
electric field at maximum, Fs + Fω , was normally strong
enough to induce diabatic field-ionization of several (but
not all) Stark substates of the n shell (see, for instance,
Ref. [3]), but the ionization could also proceed through
excitation by the microwave field to higher shells and sub-
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sequent static-field ionization in a detection region out-
side the microwave cavity. The “ionization” process thus
involves a large number of initial states, the population of
which is not known in detail, and possibly several path-
ways. This is at first sight an extremely complex problem
and one could very well expect a priori that it would be
governed by statistical distributions and thus be quite fea-
tureless. This view, however, is contradicted by a wealth
of regular structure unveiled experimentally. For varying
Fs and fixed values of Fω and ω this includes regular series
of strong resonances with fast superimposed oscillations.
Some resonances were suppressed for specific values of the
ratio Fω/Fs,r, where Fs,r is the value of Fs at resonance.
It is clear that simplifying mechanisms must exist. It is
generally accepted that one such mechanism is intrashell
transitions among the substates of the initial shell. This
can effectively transfer population from states that are
stable against ionization to states that ionize readily, as
discussed by experimentalists [1,2] and in related theoret-
ical papers by Oks and Uzer [4–6]. Another simplifying
mechanism is diabatic field-ionization directly from some
of the substates of the shell n, but not from all. If this
is indeed the dominant ionization mechanism then it is
quite understandable that the “ionization” signal carries
the signature of the intrashell mixing.

Some of the theoretical results derived here were found
earlier by the use of methods different from the present
ones [1,2,4–6]. These previous results include the positions
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of the two series of resonances, one set of suppression con-
ditions, and some fast oscillation frequencies. The present
more uniform approach has lead to a new set of suppres-
sion conditions, two new oscillation frequencies including
most importantly the dominant frequency seen experi-
mentally1, and exact expressions for intrashell transition
probabilities in the limit of weak fields. The dominant os-
cillation frequency, which was not accounted for by previ-
ous analysis and tentatively assigned to experimental im-
perfections, is explained naturally in terms of interference
between first and second order amplitudes. Koch et al. [1]
showed that the Rydberg atoms as they entered the mi-
crowave cavity represented a more or less uniform distri-
bution over all Stark substates with principal quantum
number n. The present analysis provides evidence for the
complementary conclusion that the electronic state of each
Rydberg atom was a coherent superposition of such Stark
substates.

Our objective has been to characterize the intrashell
population redistribution mentioned above. It could be
considered either as an essential part of the ionization
mechanism for strong Fs and Fω as in the cited experi-
mental work, or for weaker fields as an interesting observ-
able process in its own right. Direct experimental data on
probabilities for intrashell transitions driven by oscillating
fields of smaller frequency and amplitude do not yet ex-
ist but such data are very desirable since they would test
critically all the present theoretical predictions including
transition strengths.

In Section 2 we provide a comprehensive theory of in-
trashell mixing based on reduction to two effective two-
state problems combined with first- and second order per-
turbation theory. In Section 3 we discuss the results and
compare them with previous theoretical conclusions and
the available experimental data. In Section 4 we give rep-
resentative quantitative examples.

2 Theory of intrashell transitions

We consider Rydberg atoms with principal quantum num-
ber n interacting temporarily with collinear static and
harmonic electric fields of strengths Fs and Fω, respec-
tively, and directed along the z-axis. The total electric
field strength Ez(t) experienced by the Rydberg atoms is
thus

Ez(t) = λs(t)Fs + λω(t)Fω cosωt, (1)

where λs and λω are switching functions (λs(t → ±∞) =
λω(t → ±∞) = 0). In the cited experimental work
λs and λω are equal and determined by the passage of
fast, monoenergetic Rydberg atoms through a biased mi-
crowave cavity. Within first order perturbation theory (i.e.

1 The fast oscillations are not always present in the cited
experimental data and the experimentalists have recently cast
some doubt on the origin of the oscillations as well as on the
interactions previously thought to be responsible for the ob-
served “ionization” (see abstracts of the May 2001 DAMOP
meeting).

for weak fields) the harmonic field-component does not in-
duce any redistribution of population in the manifold of
Stark states if it is collinear with the static field. Such a re-
distribution appears either within higher orders of pertur-
bation theory or due to the presence of orthogonal fields,
which could be stray electric fields, a component of the
earths magnetic field, or a small misalignment of the fields
in (1). These possibilities were discussed previously and
some theoretical analysis with important results was pro-
vided [1,2,4–6]. However, the analysis was not complete.
The present study intends to complement the picture. We
use the simplest theoretical tools and describe both effects
within the same framework to provide a unified, compre-
hensive picture.

2.1 Weak perpendicular fields

In this section we assume that a small static electric (F⊥)
or magnetic (B⊥) field is present along the x-axis orthog-
onal to the major fields (1). Even though this field con-
figuration is relatively simple, the dynamics induced by
it within the n2-dimensional Hilbert space of the shell
may seem quite complicated. However, it was recently re-
alized [7] that the intrashell dynamics of Rydberg atoms
under the action of electric and magnetic fields with an
arbitrary time-dependence, both in magnitude and direc-
tion, can be exactly reduced to two effective two-state
problems2. These two-state problems are labeled by the
index κ (κ = 1 or 2), and when the z-axis is chosen as the
quantization axis they take the form of coupled equations
for two amplitudes χ(κ)

1 and χ(κ)
2 (see for detail Ref. [7]):

i
∂χ

(κ)
1

∂t
=

1
2
ωκz(t)χ

(κ)
1 +

1
2

[ωκx(t) − iωκy(t)]χ(κ)
2

i
∂χ

(κ)
2

∂t
=−1

2
ωκz(t)χ

(κ)
2 +

1
2

[ωκx(t) + iωκy(t)]χ
(κ)
1 . (2)

Each of the problems is governed by its own time-
dependent vector ω1(t) or ω2(t) defined by

ω1(t) =
3
2
nE(t) +

1
2

B(t),

ω2(t) = −3
2
nE(t) +

1
2

B(t), (3)

where E(t) is the electric field, B(t) the magnetic in-
duction, and n the principal quantum number. In cases
when only an electric or only a magnetic field is oper-
ative, or when the fields are perpendicular, the two ef-
fective two-state problems coincide. We are interested in
these situations.

The solution of the effective two-state problem pro-
vides us with the transition probability p. The emerging
two-state problems (2) could, both formally and physi-
cally, be cast as the time-evolution of spin- 1

2 particles sub-
ject to time-dependent “magnetic” fields ω1(t) or ω2(t).

2 Below we follow the scheme of the cited paper; a more
formal treatment was given by Fursa and Yudin [8] who also
discussed earlier attempts of reduction.
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In these terms, p is the probability of spin-flip transitions.
Avoiding details fully exposed by Kazansky and Ostrovsky
[7] (see also the paper by Kazansky et al. [9]) we briefly
demonstrate the application and power of the effective
two-state reduction by a relevant example. Consider the
situation when the uppermost Stark state is initially pop-
ulated. This state has maximum possible value k = n− 1
of the Stark quantum number k = n1 −n2 (n1 and n2 are
conventional parabolic quantum numbers [10]). The prob-
ability of transition into a state with arbitrary k, summed
over all possible values of the azimuthal quantum number
m, is given by the simple formula

Pk = Cn−1−k
2n−2 pn−1−k (1 − p)n−1+k, (4)

where

Cm
n =

n!
m! (n−m)!

(5)

is the binomial coefficient. In particular, the probability
of survival in the initial state is

Psurv = Pn−1 = (1 − p)2n−2. (6)

Contrary to previous theoretical papers [4–6] we do not
use quasi-energy or Floquet formalism3. The important
features of the experimental observations stem from the
fact that a Rydberg atom spends a finite time under the
action of the fields. This makes the quasi-energy descrip-
tion inconvenient since it does not account in a natu-
ral way for non-adiabatic field switching. Below we pre-
sume that the field switching functions λs(t) and λω(t)
are identical step functions and comment later on a more
general case. This means that λs(t) = λω(t) = 1 for
−T/2 < t < T/2 and zero otherwise. Note also that we
do not restrict our analysis to resonance situations as in
the paper by Oks and Uzer [4], i.e. no special relation be-
tween the spacing ωS = 3

2nFs of Stark sublevels and the
harmonic field frequency ω is presumed.

The weakness of the perpendicular fields allows us to
limit the analysis of the effective two-state problem (2) to
first order non-stationary perturbation theory. The am-
plitude of a non-adiabatic transition is evaluated in the
standard way as (see, for instance, book by Landau and
Lifshits [10])

a(Fs) = −iA I, (7)

I ≡
∫ T/2

−T/2

exp
[
i
3
2
n

(
Fs t+

1
ω
Fω sinωt

)]
dt, (8)

where

A =
3
4
nF⊥ or A =

1
4
B⊥ (9)

for perturbation by an electric or a magnetic field, respec-
tively. We have chosen to treat Fs as the independent vari-
able and Fω, ω, and T as parameters. Formula (4) shows,

3 A quasienergy approach within the formalism of effective
two-state problems was discussed by Kazansky and Ostrovsky
[7] and Kazansky et al. [9].

for the particular case of the uppermost Stark state, that
the two-state “spin-flip” probability p(Fs) = |a(Fs)|2 pro-
vides all the state-to-state probabilities to the lowest non-
vanishing order over the perturbing field. This observation
is actually a general one, and not limited to a specific ini-
tial state. The lowest order corresponds to a high power
of the perturbing field strength, namely to the power
2(n−1−k). In particular, the high power to which 1−p is
raised in formula (6) leads to strong suppression of survival
even if p is small. This amplification effect is non-linear in
p. Indeed, approximating formula (6) by a first-order ex-
pansion, Psurv ≈ 1−(2n−2)p, is unnecessary and strongly
restrictive, being valid only for p� 1/(2n−2), whereas (6)
remains valid under significantly less stringent conditions,
p� 1.

It is convenient to employ a standard expansion of the
exponent in terms of Bessel functions Jm(β) [11]4

exp(iβ sinωt) =
m=∞∑

m=−∞
Jm(β) exp(imωt). (10)

It allows the time integration in (8) to be carried out

I=2
j′=∞∑

j′=−∞
(−1)j′Jj′(β)∆j′ (Fs, T, ω), (11)

β≡ 3n
2ω
Fω , (12)

∆j′(Fs, T, ω)≡ sin [(T/2)(3nFs/2 − j′ω)]
3nFs/2 − j′ω

· (13)

These equations show how a(Fs) depends on the parame-
ters Fω, ω, and T . We now discuss these dependences.

“Potentially” (i.e. in the limit ωT → ∞ corre-
sponding to a purely monochromatic field) all functions
∆j′(Fs, T, ω) yield delta-functions due to the universally
known relation [10]

lim
α→∞

1
π

sin2 αx

αx2
= δ(x).

The delta-functions correspond to the resonance condition

3
2
nFs = j′ω (14)

that can be satisfied only for positive integer values of
the index j′. It obviously has the meaning of a j′-photon
resonance for transitions between adjacent Stark levels,
k → k ± 1. In case of a purely monochromatic field this
condition plays the role of a strict selection rule. In prac-
tice, a finite number of harmonic field cycles are seen
by a Rydberg atom during the time T that it spends

4 This mathematical formula is used also in Floquet theory.
This leads to some apparent resemblance with that theory.
However, as seen from our initial formula (8), we calculate the
probability of transition after the operation of a field-pulse and
not quasienergies and transition rates as in Floquet theory.
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in the field but this number can easily be rather large
(ωT/2π ∼ 150 in the cited experiments), and hence the
condition (14) provides a propensity rule. Indeed, the
function ∆j′(Fs, T, ω) is strongly peaked at resonance for
ωT/2π � 1.

We notice that the resonances are suppressed for spe-
cific values of the parameter β. For the j′th resonance this
happens when the prefactor of the relevant peaked term
in (11) equals zero, i.e.

Jj′(3nFω/(2ω)) = 0. (15)

Note, that (15) does not depend on k, so all transitions
are suppressed simultaneously.

The resonance peak is superimposed by rapid oscilla-
tions due to the phase 3nFsT/4 in (13). If the static field
strength Fs is varied at constant T , the oscillations in the
transition probability p(Fs) = |a(Fs)|2 have the frequency

f1 =
3
2
nT, (16)

which depends neither on the parameters of the harmonic
field nor on the strength of the perturbing orthogonal field.

Even though the frequency f1 was not the dominant
one found experimentally by Koch et al. [1], it was in-
deed seen. The most pronounced frequency was a factor-
of-two smaller than f1. Koch et al. (1999) tentatively sug-
gested that T should be replaced by 1

2Tint, where Tint is the
time actually spent by the atoms in the microwave cavity.
The factor 1

2 should reflect the presence of a microwave-
coupling hole in the midplane of the interaction cavity.
This hypothesis would bring (16) into agreement with the
dominant frequency observed experimentally, and it was
indeed used by Oks and Uzer [6] who were the first to
derive expression (16). However, the hypothesis was never
substantiated and Galvez et al. [2] later concluded that
in fact the perturbation of the microwave field is small.
An alternative explanation of the dominant frequency is
suggested in Section 2.3 of this paper.

While the oscillation frequency is given by the sim-
ple formula (16), the amplitude is generally a complicated
function of all the parameters. It is given by the inter-
play of the Bessel functions in (11) and the denominators
in the expressions for ∆j′ (Fs, T, ω) (13). In order to il-
lustrate the behaviour we consider Psurv near the j′ = 1
resonance for small values of β, i.e. for 3nFs/2 � ω and
3nFω/2 � ω. The probability of survival Psurv is then es-
timated by taking the square of the resonance term and
applying it in (6)

Psurv =

[
1−

(
A3n

2ω
Fω

)2 sin2 [(T/2)(3nFs/2 − ω)]
(3nFs/2 − ω)2

]2n−2

·
(17)

The high power, 2n − 2, strongly amplifies the oscilla-
tions, so instead of having a narrow resonance dip with
small separated dips on each side, which would be the re-
sult if 2n− 2 were small, one expects to see a broadened
resonance dip with overlapping damped oscillations.

The state-to-state transition probabilities contain in-
teger powers of p(Fs) (see formula (4)). Therefore, har-
monics fq of the frequency f1 appears in a Fourier spec-
trum of Psurv(Fs) (fq = qf1 with integer q). Furthermore,
Psurv is not strictly a periodic function of Fs because of
the Fs-dependence of the denominator in the expression
for ∆j′ (Fs, T, ω) (13). The Fourier spectrum could there-
fore also show “smaller peaks at values of f that are not
integral multiples of f1” [1].

2.2 Second-order effects

The intrashell second-order effects in the electric field were
reduced by Solov’ev [12] to the convenient form of an
equivalent operator

Ŵ = −E2 n
4

16
(
5n2 + 31 + 24L2 − 21L2

z + 9A2
z

)
, (18)

where L and A are the electron angular momentum and
Runge-Lenz operators, respectively (the electric field is
directed along z-axis). In the basis of Stark states this
operator has diagonal matrix elements

〈n km |Ŵ |n km〉 = −E2n
4

16
(17n2 + 19 − 9m2 − 3k2) (19)

that give the well-known quadratic Stark shifts of hydro-
gen energy levels, but most importantly, the non-diagonal
matrix elements

〈n k + 2m | Ŵ |n km〉 = 〈n km | Ŵ |n k + 2m〉 = E2 Ck m,

Ck m =
3
8
n4

√
[(n− k − 1)2 −m2][(n+ k + 1)2 −m2] (20)

couple Stark states of quantum numbers k and k ± 2. All
other non-diagonal matrix elements vanish5.

The second-order effects resulting from (virtual) inter-
shell transitions cannot be treated within the reduction
scheme of the previous section. We employ instead con-
ventional first-order non-stationary perturbation theory
(Landau and Lifshits [10]). The amplitudes of the tran-
sitions k → k + 2 induced by the operator (18) are evalu-
ated in terms of the standard integral (8) but with doubled
arguments:

b(Fs)k→k+2 = −i Ck m

∫ T/2

−T/2

dt (Fs + Fω cosωt)2

× exp
[
i 3n

(
Fs t+

1
ω
Fω sinωt

)]

= i Ck m Fω

( ω

3n

)2 d
dFω

∫ T/2

−T/2

dt

× exp
[
i 3n

(
Fs t+

1
ω
Fω sinωt

)]
+ Q

= 2i Ck m

( ω

3n

)2
j=∞∑

j=−∞
(−1)j 2β J ′

j(2β)

×∆j(2Fs, T, ω) + Q. (21)
5 The same result was rederived recently by Oks and Uzer [4]

within their “robust perturbation theory” [13].
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The term

Q = −i
2
3n

Ck m

[
Fs + Fω cos

(
1
2
ωT

)]

× sin
[
3
2
nFsT +

3
ω
nFω sin

(
1
2
ωT

)]
(22)

comes from integration by parts and is not of particu-
lar interest here since it is not of resonance nature. The
origin of the argument doubling is simple. Standard non-
stationary perturbation theory implies integration over
time t with the characteristic exponent i

∫ t
∆E(t′) dt′ in

the integrand, as in formulae (8) or (21). The perpen-
dicular field induces transitions between adjacent Stark
states, ∆k = ±1, whereas for the second order effect the
transition energy ∆E is twice as large, since ∆k = ±2.
Our result (21) could be compared with formula (56) ob-
tained by Oks and Uzer [4], which in our notation equals
Ck m ω2 (−1)j 2βJ ′

j(2β). It does not include the interfer-
ence factor ∆j and is thus valid only at exact resonance.

The structure of formula (21) is qualitatively similar
to that of expression (11), although there are important
quantitative differences. In particular, according to for-
mula (21) instead of the resonance condition (14) we now
have

3nFs = jω. (23)

The origin of the difference is clear: the second order ef-
fects only induce transitions with a change of the Stark
quantum number k by ±2, whereas for perpendicular fields
transitions between adjacent Stark levels, k → k ± 1, is
possible. The resonance transitions are suppressed if

J ′
j(3nFω/ω) = 0. (24)

This condition coincides with the one suggested by Galves
et al. [2] and Oks and Uzer [4]. It is in good agreement with
the experimental data, as discussed by these authors. Note
that all the transitions k → k± 2 are suppressed simulta-
neously, independent of k. It is evident from a comparison
between (11) and (21) that the second-order transitions
lead to fast oscillations at the frequency f2 = 2f1. The
characteristics of these oscillations are similar to the ones
discussed in the previous section.

2.3 Amplitude interference effects

In this section we consider the possibility that each
Rydberg atom is initially described by a coherent super-
position of Stark states |n, k,m〉 of energy Ek, ψ(t) =∑

k,mAk,m|n, k,m〉 exp(−iEkt). The amplitude for tran-
sition to a final Stark state |n, k,m〉 induced by the field-
pulse has contributions from the states |n, k ± 1,m〉 due
to weak perpendicular fields and from |n, k± 2,m〉 due to
second order effects. To expose the essential effects of this
coherence we consider the total amplitude for small values
of β and near the single-photon resonances. According to

formulae (11) and (21) it has the form

ak = D1β∆1(Fs, T, ω) +D2β∆1(2Fs, T, ω)

=
[
D1

sin [(T/2)(3nFs/2 − ω)]
3nFs/2 − ω

+ D2
sin [(T/2)(3nFs − ω)]

3nFs − ω

]
β, (25)

where the constants D1 and D2 depend on the strengths
of the two transition mechanisms and on the population
of the contributing initial Stark states. The interference
term in |ak|2

pint = 2β2 Re(D1D2)
sin [(T/2)(3nFs/2 − ω)]

3nFs/2 − ω

× sin [(T/2)(3nFs − ω)]
3nFs − ω

= β2 Re(D1D2)

×cos [(3/4)nTFs] − cos [(9/4)nTFs − ωT ]
(3nFs/2 − ω)(3nFs − ω)

(26)

shows oscillations of comparable amplitude at the frequen-
cies

fint =
1
2
f1 =

3
4
nT and 3fint. (27)

The dominant frequency observed experimentally agrees
exactly with fint.

The dependence of the transition probability on the
perturbation parameter A, which is proportional to the
strength of the perpendicular field (Sect. 2.1), is as fol-
lows. A perpendicular field alone induces transitions with
probability p ∼ D2

1 ∼ A2, whereas the interference term
behaves as pint ∼ 2Re(D1D2) ∼ A. If the perturbation A
is small (for instance, being induced by weak stray elec-
tric fields) then p may be vanishingly small, but the in-
terference term pint prevails provided second order effects
are significant. In other words, interference effectively en-
hances the influence of stray fields in the regime where
transitions are induced mainly by the second-order effects.

3 Discussion

3.1 Resonance position

Considering the two resonance conditions obtained, we no-
tice that all resonances satisfying condition (23) (second-
order effects) also satisfy condition (14) (perpendicular-
field effects), but the reverse statement is not true. Every
perpendicular-field resonance is masked by a second-order
resonance (2j′ = j), but the second-order resonances of
odd j are pure and since they are observed in the experi-
ments, the second-order mechanism is definitely operative.
It is more difficult to judge whether perpendicular-field
resonances are present, since they are always veiled. It
can be noted, however, that the experimental data dis-
played in Figure 1 of the paper by Galves et al. [2] exhibit
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Fig. 1. Survival probability Ppass against diabatic electric field
ionization for three ensembles of Rydberg atoms with n = 40
at Fω = 220 V/cm, ω = 2π × 8.1 GHz, and T = 16.9 ns.
Full curve, uniform distribution on all n1, n2, and m. Dotted
curve, uniform distribution on all n1 and n2, but |m| ≤ 3.
Broken curve, uniform distribution on 0 ≤ k = n1 − n2 ≤ 39
and m = 0. Compare with Figure 1 in Galves et al. [2]. Inset
shows a few states of the n = 40 Stark manifold and critical
fields Fcrit satisfying Γ (Fcrit) = 109 s−1.

a significantly more pronounced and broadened resonance
for j = 2 than for j = 1. This could be tentatively re-
lated to the fact that in the former case both mechanisms
work jointly whereas in the latter only the second-order
mechanism is operative. The appearance of the oscillation
frequency fint is further evidence that perpendicular-field
effects are indeed operative, since otherwise the related
interference effects vanish.

3.2 Resonance suppression

Using (23) one can rewrite the suppression condition (24)
of resonances induced by second-order effects to the form
employed by Galves et al. [2]:

J ′
j(jR) = 0, R = Fω/Fs,r. (28)

Condition (15) for the suppression of resonances induced
by perpendicular fields can be cast in a similar form

Jj′ (j′R) = 0. (29)

The suppression condition (28) pertaining to second-order
effects was tested by Galves et al. [2] who indeed found
suppression at the first non-trivial zero of J ′

j(jR) for j = 2,
3, and 4, and at the second non-trivial zero of J ′

1(R). How-
ever, the condition (29) from perpendicular fields has not
yet been examined experimentally. For j′ = 1 and 2, the
first non-trivial zeroes of Jj′ (j′R) are at R = 3.832 and
2.568, respectively. The suppression at these R-values may
not be complete because each perpendicular-fields reso-
nance is masked by a second-order resonance as discussed
in Section 3.1, and the two resonance mechanisms lead
to suppression at different values of R. However, this is
not a disadvantage since it allows for separate tests of

the two suppression conditions. For instance, experimen-
talists [2] saw suppression of the resonance at Fs = 2ω/3n
near R = 1.527 (j = 2), but it should be suppressed
also at R = 3.832 (j′ = 1). Similarly, the resonance at
Fs = 4ω/3n should be suppressed not only at R = 1.326
(j = 4) but also at R = 2.568 (j′ = 2). Experimental data
to test (29) at the mentioned R-values of 3.832 and 2.568
are very desirable.

3.3 High-frequency oscillations under Fs variation

The high-frequency oscillations derived and discussed in
Section 2 are crucially related to the non-adiabatic switch-
ing of the electric fields. When the fields are switched on
non-adiabatically they are likely to populate coherently a
range of Stark substates of different energies, and the re-
sulting interference or beat pattern is “registered” as the
field is switched off. The sudden switching presumed in the
present calculations emphasizes the effect, but it persist
for any form of switching functions λs(t) and λω(t), pro-
vided they are sufficiently steep. For smoother switching
these oscillations tend to disappear.

Oscillations at the frequency 2f1 should be seen near
the lowest-lying resonance caused by the second-order ef-
fects only, and oscillations at the two frequencies f1 and
2f1 should be seen near the next resonance caused by
second-order effects as well as perpendicular fields. The
frequencies f1 and 2f1 were both seen in the experiments
but they were not correlated with the resonance structure
and neither of them were dominant. A Fourier analysis of
the data in selected segments of Fs would test the pre-
dicted correlation. Note that according to formula (26)
the frequencies fint and 3fint (27) are present near both
types of resonance.

The amplitude interference terms showing oscillations
at the frequencies fint and 3fint are present only when the
initial Rydberg atoms are prepared in a coherent super-
position of Stark substates (see Sect. 2.3). It seems that
coherence conditions were met in the experiments. Full ex-
perimental detail was given by Koch and van Leeuwen [14]
and Koch et al. [1]. A monoenergetic beam of acceler-
ated protons (14 keV) was partially neutralized in a gas
cell, and when the resulting hydrogen atoms entered a re-
gion of high electric fields, some of them were excited to
an extremal Stark state by laser excitation. During flight
from the high-field domain to the microwave cavity the
Rydberg atoms traversed a region, which was intended to
be field-free, but where they actually were influenced by
uncontrolled stray electric fields. This led to an ensem-
ble of atoms which in selective field ionization was con-
sistent with a uniform distribution of population over all
substates of the shell. The Rydberg atoms used in the
experiments were tightly collimated and quite monoener-
getic. All atoms thus experienced the same field variation
as they passed the region of stray electric fields, so an
ensemble of atoms in identical coherent superpositions of
Stark states, could be formed already in this region, and
not just a statistical distribution. The presumption is sup-
ported by the following estimate. A realistic stray field of
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less than 500 mV/cm leads to a Stark period longer than
about 20 ns for a typical n value. The interaction time was
about 50 ns corresponding to a flight distance of 10 cm.
The very small fluctuations of this time (≤1% of 50 ns)
are small compared to the Stark period (≥20 ns). It is
thus likely that phases are well-defined and a coherent
superposition is formed.

Coherent superpositions could also be formed at the
entrance to the microwave cavity. The electrically iso-
lated endcaps of the cavity were symmetrically biased
(±V/2 volts) to form the static electric field, Fs, inside the
cavity. As the Rydberg atoms approached the cavity from
ground potential and flew into it, they therefore felt a lon-
gitudinal field which went to zero and changed direction
somewhere inside the long, cylindrical entrance hole of the
first endcap (diameter 2.0 mm and length 6.4 mm). The
Rydberg atoms passed the endcap in less than 4 ns, and
during this time the atoms saw an electric field which var-
ied by typically 100 V/cm. Even when the non-linear vari-
ation of the field within the hole is taken into account, the
rate-of-change of the field as seen by the Rydberg atoms
was large near the position where the field was close to
zero and where the Rydberg atoms were the least stabi-
lized by the field. A well-defined instant of time for state
mixing thus exists which would also lead to a coherent
superposition.

The expression (26) for the amplitude interference
term leads to the frequencies fint = 1

2f1 and 3fint of which
the first agrees exactly with the dominant frequency seen
experimentally [1]. Oscillations at the frequency, fint, per-
meates the full range of Fs-values in good agreement with
the double-resonance structure of (26). The oscillations
at the higher frequency, 3fint, should be exactly as in-
tense as the ones at fint. This does not agree with the ex-
perimental results, which show a much reduced strength.
However, this is most likely due to a broadening mech-
anism that masks the higher frequencies. We conclude
that the Rydberg atoms are in coherent superpositions
of Stark states as they enter the microwave cavity, that
both mechanisms of intrashell transitions are operative,
and that they interfere as discussed in Section 2.3.

4 Representative quantitative examples

4.1 Diabatic field ionization

A quasistatic electric field that rises slowly does not mix
hydrogenic Stark states belonging to different shells, and
the electric field dependent energy levels cross freely or
diabatically (for a detailed discussion see, for instance,
book by Gallagher [15]). The rising field will eventually
lead to the ionization of the atom. For a given Stark state
this takes place at a quite well-defined value of the field
strength when the overlap between the bound Stark state
and the continuum of free Stark states has become suffi-
ciently large. The electron then tunnels through the poten-
tial barrier that separates the bound and the continuum
states. The electric-field dependent rate coefficient for the
tunneling, Γ , was analyzed, among others, by Damburg

and Kolosov [3] who gave a convenient closed analytical
expression that covers all Stark states, Γ = Γn,n1,n2,m(F )
where n, n1, n2, and m are parabolic quantum numbers
and F the field strength. Stark states with electric dipole
moment parallel to the field are depressed in energy and
they ionize at a smaller field-strength than states of an-
tiparallel dipole moment that are raised in energy. Crit-
ical fields corresponding to Γ = 109 s−1 for n = 40
are shown in the inset of Figure 1. It is clear that the
maximum fields normally present in the microwave cavity
used in the experiments are sufficiently strong to ionize
a considerable part of the downshifted Stark states (220–
470 V/cm, [2]). The experiments determined the probabil-
ity for an atom to pass the cavity without being ionized,
Ppass = exp

[
− ∫ T/2

−T/2 Γ (F (t))dt
]
. In order to be able to

calculate this quantitatively, we utilized the fact that ion-
ization takes place only within short intervals around the
time tm when F (t) is near its maximum value Fm. Γ (F (t))
is very strongly peaked in these intervals with a maximum
value of Γm. The following approximations are therefore
justified. Γ (F ) is expanded to first order around Fm, and
(F − Fm) is expanded to second order around t = tm.
This leads to Γ (t) = Γm − 1

2Fω[dΓ (Fm)/dF ]ω2(t− tm)2.
The integral of Γ was taken over the time intervals for
which Γ (t) ≥ Γm/2. It can be calculated analytically,
but we do not give the expression here. It takes the val-
ues I = NIn,n1,n2,m(Fs, Fω , ω), where N is the num-
ber of cycles seen by the atom. With this we finally get
Ppass = exp(−I). Figure 1 shows Ppass(Fs) for n = 40,
Fω = 220 V/cm, ω = Ω0 ≡ 2π × 8.1 GHz, and for a few
substate distributions. The distribution actually used in
the experiments is unknown but Galves et al. [2] mention
a uniform distribution on all substates as a likely pos-
sibility. We show Ppass for this distribution and for two
distributions over states of low angular momentum. The
calculations should be compared to the experimental data
shown in Figure 1 of Galves et al. [2]. Although the agree-
ment is not perfect, it is indeed fairly good, so we conclude
that the ionization mechanism is diabatic field ionization
directly from the initial shell n.

4.2 Perpendicular field effects

We discuss only the effect of a perpendicular electric
field since perpendicular electric and magnetic fields are
treated on the same footing (9). The choice of field pa-
rameters is guided by the experiments [1,2]. In partic-
ular, we choose the microwave frequency ω = Ω0 and
consider Rydberg atoms with principal quantum num-
ber n = n0 ≡ 45. Figure 2 shows high-frequency oscil-
lations in the survival probability (6) with p = |a(Fs)|2
given by (7) and (11). This could be compared with the
lower curve in Figure 9 of [1]. The time T is taken as
the full time spent by an atom in the microwave cavity,
i.e. T = Tint ≡ L/v = 15.9 ns where L = 2.758 cm is
the cavity length and v = 1.73 × 106 m/s is the velocity
of the H atoms (15.8 keV). Figure 2 shows rapid oscilla-
tions of frequency f1 (16) in striking disagreement with



22 The European Physical Journal D

Fig. 2. High-frequency oscillations of the survival probability
in the outermost Stark state of a H(n = 45) atom. The oscilla-
tions are induced by a small field component (F⊥ = 0.6 V/cm)
perpendicular to collinear static Fs and microwave Fω fields.
Fω = 152 V/cm, ω = 2π × 8.1 GHz, and T = 15.9 ns.

the dominant experimental frequency, which is two times
lower. Oks and Uzer [4] replace T by 1

2Tint to eliminate
the disagreement but the justification for doing so is weak.
We demonstrated already in Section 2.3 under simplifying
assumptions that an interference term oscillates at f1/2
in agreement with the experimental data. In Section 4.4
we show numerically without simplifying assumptions how
the lower frequency emerges. It should be noted also that
the depth of modulations in Figure 2 increases with Fs.
This again is in disagreement with the experimental re-
sults, but as we shall see, the interference term leads to
an almost constant modulation depth in good agreement
with experiment.

In our calculations we have chosen a perpendicular
field component of F⊥ = 0.6 V/cm. This field could come
from a small misalignment of the static and microwave
fields (F⊥/Fs ≈ 0.004 rad) or from stray electric charges.
A magnetic field of B⊥ ≈ 38 Gauss would have the same
effect (n = 45), but this field is unrealistically high, so
the perpendicular field is most likely electric. The chosen
field, F⊥, gives depths of modulation between 1% and 4%
(Fig. 2), which are representative for some experimental
results (see Fig. 6 in the paper by Koch et al. [1]). In the
regime considered here the modulation depth 1−Psurv ∼ p
is proportional to F 2

⊥.
Figure 3 shows the j′ = 1 resonance of the

perpendicular-field effect and its suppression at R = 3.832
(Eqs. (6, 7, 11)). In order to avoid electric fields near sup-
pression far beyond the ionization limit, we take ω =
1
4Ω0 in this example. The resonance then lies at Fs =
23.45 V/cm and it is suppressed at Fω = 89.84 V/cm.
Note that this type of resonance suppression has not been
tested experimentally. The fast oscillations seen in Fig-
ure 3 are given predominantly by the j′ = 1 term in (11),
but they are modulated near the resonance by other terms
of low j′.

4.3 Second-order effects

The j = 2 two-photon resonance and its suppression at
R = 1.527 is illustrated in Figure 4 for the standard pa-

Fig. 3. The j′ = 1 resonance in H(n = 45) induced by a
perpendicular field (F⊥ = 0.6 V/cm) is shown for three values
of Fω. T = 16.9 ns and ω = 2π × 2 GHz. The resonance is
suppressed at Fω = 89.84 V/cm (b), but strong just below
(88 V/cm) (a) and above (92 V/cm) (c).

rameters (ω = Ω0, n = n0). We first concentrate on the
position of the resonance. According to formula (23) one
should expect to see the resonance at 93.8 V/cm, but it
was observed at about 88V/cm (Fig. 2 in Galves et al. [2]).
The reason for this quite significant shift of 6% was not
discussed. However, within the present theory we can com-
ment on it. The k-dependent part of the Stark shift in
the first and second orders of perturbation theory reads
(cf. Eq. (19)):

δEk =
3
2
nkE +

3
16
n4k2E2. (30)

From this formula we see that the spacing between ad-
jacent Stark sublevels is independent of k to first order,
but it becomes k-dependent when second order terms are
included. The k = 0 level in the middle of the Stark spec-
trum is unshifted, but in the lower part of the spectrum
(k < 0) the levels are increasingly compressed whereas
the spacing increases in the upper part (k > 0). The lat-
ter is the more essential part for ionization enhancement,
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Fig. 4. The j = 2 resonance in H(n = 45, k = 0) induced
by second-order effects is shown for three values of Fω. T =
16.9 ns and ω = 2π × 8.1 GHz. The resonance is suppressed at
Fω = 143.2 V/cm (b), but strong just below (139 V/cm) (a)
and above (148 V/cm) (c).

because states belonging to this part generally do not ion-
ize (see inset of Fig. 1). Enhancement is due to transfer of
population from states in the upper part of the spectrum
that do not ionize to states in the lower part that ionize
immediately. Since the spacing is increased in the upper
part of the spectrum, a resonance with a fixed two-photon
energy, 2ω, occurs at a smaller value of Fs, in qualitative
agreement with the shift seen experimentally. The shift
depends slightly on Fω (Fig. 2 in Galves et al. [2]). We
are not in a position to comment on this dependence at
present.

Bearing in mind that the shift discussed above is
not included in our simple formulae, we can still com-
pare our results shown in Figure 4 with the experimen-
tal data (Fig. 2 in Galves et al. [2]). To comply with
the experimental parameters the velocity v now corre-
sponds to 14 keV/amu, so T = Tint = 16.9 ns. Theory
and experiment agree that resonance suppression occurs
at R = 1.527. When comparing survival probabilities one

should note that we show in Figure 4 the probability 1−p
with p = |b(Fs)k→k+2|2 for k = 0, i.e. a substate lying in
the center of the Stark manifold. The results represent the
survival probability for only this substate, so even though
we take it to be representative, the comparison with the
experimental data can only be qualitative. Quite natu-
rally, since the calculation takes into account depopulation
of only one Stark state it leads to much smaller resonance
dips than seen experimentally (� 1% vs. � 50%). The
theoretical resonance is substantially deeper above reso-
nance suppression than below. This trend is not seen in
the experimental data, perhaps because of saturation ef-
fects. The frequency of the fast oscillations seen in Figure 4
is twice the frequency seen in the previous figures.

4.4 Combined picture: Interference effects

We now consider the interference of the two intrashell
transition mechanisms and assume complete coherence as
in Section 2.3. We use the standard parameters ω = Ω0

and n = n0, and Tint = 16.9 ns, Fω = 152 V/cm, and
F⊥ = 0.6 V/cm. Figures 5a, 5b, and 5c show 1−p for p =
|a(Fs)|2, p = |b(Fs)0→2|2 , and p = |a(Fs) + b(Fs)0→2|2,
respectively. Corresponding Fourier spectra are shown in
Figures 5d, 5e, and 5f. The first (Fig. 5d) shows that
the perpendicular field alone produces oscillations with
a single frequency f1 = 3nT/2 = 9.12 (V/cm)−1, the
second (Fig. 5e) confirms that the second-order effects
alone generate oscillations with doubled frequency 2f1 =
18.24 (V/cm)−1, and the third (Fig. 5f) demonstrates
that interference implies two new frequencies, 1

2f1 =
4.56 (V/cm)−1 and 3

2f1 = 13.68 (V/cm)−1, in agreement
with the analysis in Section 2.3. With the realistic pa-
rameters chosen for the present example, the strength
of the Fourier component 2f1 dominates whereas f1 is
rather small. The two interference components have equal
strengths which lie in between the two previous ones. This
is in full agreement with our discussion in Section 2.3, in-
terference effectively enhances the influence by stray fields
in the regime where transitions are induced mainly by the
second-order effects. The experiments do not give equal
amplitudes of the interference terms, as discussed in the
end of Section 3.3. The periods of the slow and fast in-
terference components are 2π/(1

2f1) = 1.38 V/cm and
0.46 V/cm, respectively. The strengths of stray electric
fields could be comparable to the short period and thus
lead to some smearing of the fast oscillations. These would
accordingly appear to be weaker than the slow oscillations
as observed.

5 Conclusion

Recent experiments on the ionization of Rydberg atoms
of H exposed to collinear static and microwave fields were
analyzed with special emphasis on intrashell transitions.
This has led to a comprehensive theory of intrashell dy-
namics of hydrogenic Rydberg atoms exposed simultane-
ously to static and harmonic external fields. Two intrashell
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Fig. 5. High-frequency oscillations of 1−p for H atom in a microwave field of ω = 2π×8.1 GHz. Other parameters as in Figures 3
and 4; (a) only perpendicular field effects; (b) second-order effects; (c) both effects under the assumption of complete coherence.
Fourier spectra of (a), (b), and (c) are shown in (d), (e), and (f), respectively. The frequencies f1 = 3nT/2 = 9.12 (V/cm)−1

and 2f1 are seen in (d) and (e), respectively, and (f) shows four frequencies, f1 and 2f1 as well as interference frequencies 1
2
f1

and 3
2
f1. Note that the period corresponding to f1 is 2π/f1 = 0.689 V/cm.

transition mechanisms were treated and it was shown how
they interfere when the initial Rydberg state is a coherent
superpositions of Stark substates. Some results obtained
in this work were published previously by other authors.
Nevertheless, we think that the present treatment is valu-
able because it offers new predictions on intrashell transi-
tions, it is simple, and it is comprehensive. The compar-
ison with the available experimental data on hydrogen is
facilitated by the pure Coulomb potential of the problem,
but it is complicated by an unknown initial distribution
of population on the Stark substates of the selected shell
n and by a somewhat uncertain basic interpretation of
the experimental data. It is also (but to a smaller extent)
made difficult by the experimental summation over to-
tally different ionization channels that are not separated.
The present theory provides specific predictions which can
be tested directly in future experiments focused on the in-
trashell dynamics instead of multistage ionization process.

V.N.O. is thankful for hospitality to the staff of the Institute
of Physics and Astronomy, Aarhus University where this work
was carried out.
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